Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 26
Фильтр
Добавить фильтры

Годовой диапазон
1.
PLoS One ; 18(5): e0284823, 2023.
Статья в английский | MEDLINE | ID: covidwho-2316321

Реферат

Tick-borne encephalitis virus (TBEV) is one of the most threatening pathogens which affects the human central nervous system (CNS). TBEV circulates widely in Northern Eurasia. According to ECDC, the number of TBE cases increase annually. There is no specific treatment for the TBEV infection, thus vaccination is the main preventive measure. Despite the existence of several inactivated vaccines currently being licensed, the development of new TBEV vaccines remains a leading priority in countries endemic to this pathogen. Here we report new recombinant virus made by infectious subgenomic amplicon (ISA) approach using TBEV and yellow fever virus vaccine strain (YF17DD-UN) as a genetic backbone. The recombinant virus is capable of effective replication in mammalian cells and induce TBEV-neutralizing antibodies in mice. Unlike the original vector based on the yellow fever vaccine strain, chimeric virus became neuroinvasive in doses of 107-106 PFU and can be used as a model of flavivirus neuroinvasiveness, neurotropism and neurovirulence. These properties of hybrid structures are the main factors limiting their practical use as vaccines platforms.


Тема - темы
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Viral Vaccines , Yellow Fever Vaccine , Humans , Animals , Mice , Yellow Fever Vaccine/genetics , Yellow fever virus/genetics , Mammals
2.
Front Immunol ; 14: 1129245, 2023.
Статья в английский | MEDLINE | ID: covidwho-2294762

Реферат

Introduction: Numerous agents for prophylaxis of SARS-CoV-2-induced diseases are currently registered for the clinical use. Formation of the immunity happens within several weeks following vaccine administration which is their key disadvantage. In contrast, drugs based on monoclonal antibodies, enable rapid passive immunization and therefore can be used for emergency pre- and post-exposure prophylaxis of COVID-19. However rapid elimination of antibody-based drugs from the circulation limits their usage for prolonged pre-exposure prophylaxis. Methods: In current work we developed a recombinant adeno-associated viral vector (rAAV), expressing a SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibody P2C5 fused with a human IgG1 Fc fragment (P2C5-Fc) using methods of molecular biotechnology and bioprocessing. Results and discussions: A P2C5-Fc antibody expressed by a proposed rAAV (rAAV-P2C5-Fc) was shown to circulate within more than 300 days in blood of transduced mice and protect animals from lethal SARS-CoV-2 virus (B.1.1.1 and Omicron BA.5 variants) lethal dose of 105 TCID50. In addition, rAAV-P2C5-Fc demonstrated 100% protective activity as emergency prevention and long-term prophylaxis, respectively. It was also demonstrated that high titers of neutralizing antibodies to the SARS-CoV-2 virus were detected in the blood serum of animals that received rAAV-P2C5-Fc for more than 10 months from the moment of administration.Our data therefore indicate applicability of an rAAV for passive immunization and induction of a rapid long-term protection against various SARS-CoV-2 variants.


Тема - темы
COVID-19 , Humans , Animals , Mice , COVID-19/prevention & control , SARS-CoV-2 , Biotechnology , Antibodies, Monoclonal , Antibodies, Viral , Immunoglobulin Fc Fragments
3.
Front Immunol ; 14: 1098302, 2023.
Статья в английский | MEDLINE | ID: covidwho-2275528

Реферат

Single-domain antibodies (sdAbs, VHHs, or nanobodies) are a promising tool for the treatment of both infectious and somatic diseases. Their small size greatly simplifies any genetic engineering manipulations. Such antibodies have the ability to bind hard-to-reach antigenic epitopes through long parts of the variable chains, the third complementarity-determining regions (CDR3s). VHH fusion with the canonical immunoglobulin Fc fragment allows the Fc-fusion single-domain antibodies (VHH-Fc) to significantly increase their neutralizing activity and serum half-life. Previously we have developed and characterized VHH-Fc specific to botulinum neurotoxin A (BoNT/A), that showed a 1000-fold higher protective activity than monomeric form when challenged with five times the lethal dose (5 LD50) of BoNT/A. During the COVID-19 pandemic, mRNA vaccines based on lipid nanoparticles (LNP) as a delivery system have become an important translational technology that has significantly accelerated the clinical introduction of mRNA platforms. We have developed an mRNA platform that provides long-term expression after both intramuscular and intravenous application. The platform has been extensively characterized using firefly luciferase (Fluc) as a reporter. An intramuscular administration of LNP-mRNA encoding VHH-Fc antibody made it possible to achieve its rapid expression in mice and resulted in 100% protection when challenged with up to 100 LD50 of BoNT/A. The presented approach for the delivery of sdAbs using mRNA technology greatly simplifies drug development for antibody therapy and can be used for emergency prophylaxis.


Тема - темы
Botulinum Toxins, Type A , COVID-19 , Single-Domain Antibodies , Animals , Humans , Mice , Single-Domain Antibodies/genetics , Pandemics , Dose-Response Relationship, Drug
4.
Vaccines (Basel) ; 11(1)2022 Dec 30.
Статья в английский | MEDLINE | ID: covidwho-2230413

Реферат

Vaccination against COVID-19 has occurred in Russia for more than two years. According to the Russian official clinical guidelines to maintain tense immunity in the conditions of the ongoing COVID-19 pandemic, it is necessary to use booster immunization six months after primary vaccination or a previous COVID-19 contraction. It is especially important to ensure the maintenance of protective immunity in the elderly, who are at risk of severe courses of COVID-19. Meanwhile, the immunological effectiveness of the booster doses has not been sufficiently substantiated. To investigate the immunogenicity of Sputnik V within the recommended revaccination regimen and evaluate the effectiveness of booster doses, we conducted this study on 3983 samples obtained from individuals previously vaccinated with Sputnik V in Moscow. We analyzed the level of antibodies in BAU/mL three times: (i) six months after primary immunization immediately before the booster (RV), (ii) 3 weeks after the introduction of the first component of the booster (RV1), and (iii) 3 weeks after the introduction of the second component of the booster (RV2). Six months after the primary vaccination with Sputnik V, 95.5% of patients maintained a positive level of IgG antibodies to the receptor-binding domain (RBD) of SARS-CoV-2. The degree of increase in the specific virus-neutralizing antibodies level after revaccination increased with a decrease in their initial level just before the booster dose application. In the group of people with the level of antibodies up to 100 BAU/mL six months after the vaccination, a more than eightfold increase (p < 0.001, Wilcoxon criterion with Bonferroni adjustment) in the level of specific antibodies was observed (Me = 8.84 (IQR: 3.63−30.61)). A significant increase in the IgG level after receiving both the first and the second booster doses occurred at the initial titer level up to 300 BAU/ mL (p < 0.001) in those who did not contract COVID-19 in the past and up to 100 BAU/mL (p < 0.001) in those who were previously infected with SARS-CoV-2. A significant increase in the antibody level after the first dose of the booster was noted for people who had up to 500 BAU/mL (p < 0.05), regardless of the previous COVID-19 infection. Thus, revaccination is most effective in individuals with an antibody level below 500 BAU/mL, regardless of the vaccinee age and COVID-19 contraction. For the first time, it has been shown that a single booster dose of the Sputnik vaccine is sufficient to form a protective immunity in most vaccinees regardless of age and preexisting antibody level.

5.
Int J Mol Sci ; 23(17)2022 Sep 05.
Статья в английский | MEDLINE | ID: covidwho-2235709

Реферат

Despite the widespread use of the COVID-19 vaccines, the search for effective antiviral drugs for the treatment of patients infected with SARS-CoV-2 is still relevant. Genetic variability leads to the continued circulation of new variants of concern (VOC). There is a significant decrease in the effectiveness of antibody-based therapy, which raises concerns about the development of new antiviral drugs with a high spectrum of activity against VOCs. We synthesized new analogs of uracil derivatives where uracil was substituted at the N1 and N3 positions. Antiviral activity was studied in Vero E6 cells against VOC, including currently widely circulating SARS-CoV-2 Omicron. All synthesized compounds of the panel showed a wide antiviral effect. In addition, we determined that these compounds inhibit the activity of recombinant SARS-CoV-2 RdRp. Our study suggests that these non-nucleoside uracil-based analogs may be of future use as a treatment for patients infected with circulating SARS-CoV-2 variants.


Тема - темы
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , COVID-19 Vaccines , Humans , Uracil/pharmacology
6.
Int J Mol Sci ; 23(23)2022 Nov 24.
Статья в английский | MEDLINE | ID: covidwho-2123701

Реферат

Findings collected over two and a half years of the COVID-19 pandemic demonstrated that the level immunity resulting from vaccination and infection is insufficient to stop the circulation of new genetic variants. The short-term decline in morbidity was followed by a steady increase. The early identification of new genetic lineages that will require vaccine adaptation in the future is an important research target. In this study, we summarised data on the variability of genetic line composition throughout the COVID-19 pandemic in Moscow, Russia, and evaluated the virological and epidemiological features of dominant variants in the context of selected vaccine prophylaxes. The prevalence of the Omicron variant highlighted the low effectiveness of the existing immune layer in preventing infection, which points to the necessity of optimising the antigens used in vaccines in Moscow. Logistic growth curves showing the rate at which the new variant displaces the previously dominant variants may serve as early indicators for selecting candidates for updated vaccines, along with estimates of efficacy, reduced viral neutralising activity against the new strains, and viral load in previously vaccinated patients.


Тема - темы
COVID-19 , Vaccines , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics
7.
Vaccines (Basel) ; 10(11)2022 Oct 26.
Статья в английский | MEDLINE | ID: covidwho-2090383

Реферат

Medical personnel are a group of people that often encounter infectious agents, leading to greater risk of contracting infectious diseases. Specific prevention of diseases in this group is a priority. The epidemiological effectiveness of COVID-19 prevention in the group of medical workers due to the emergence of new variants of concern of the SARS-CoV-2 virus has not been studied in sufficient depth. We conducted a study of the effectiveness of vaccine use to protect medical workers at a large medical center for obstetrics and gynecology in Moscow. Sputnik V and Sputnik Light were the main vaccines used for the prevention of COVID-19. The vaccines are based on a variant of the S-protein of the SARS-CoV-2 virus, with adenovirus serotypes 5 and 26 as the vector for delivery. Vaccination of employees occurred during the period in which the Delta variant was spreading. The overall epidemiological effectiveness was 81.7% (73.1-87.6%) during the period in which the Delta variant was dominant. During the period from the beginning of vaccination (26 November 2020) until 8 February 2022, the overall effectiveness was 89.1% (86.9-91.0%). As expected, the highest effectiveness during this period was obtained in the group that received the third and fourth doses-96.5% (75.0-99.5%). The severity of COVID-19 in the vaccinated group was significantly lower than in the unvaccinated group.

8.
Emerg Microbes Infect ; 11(1): 2229-2247, 2022 Dec.
Статья в английский | MEDLINE | ID: covidwho-2004931

Реферат

Although unprecedented efforts aiming to stop the COVID-19 pandemic have been made over the past two years, SARSCoV-2 virus still continues to cause intolerable health and economical losses. Vaccines are considered the most effective way to prevent infectious diseases, which has been reaffirmed for COVID-19. However, in the context of the continuing virus spread because of insufficient vaccination coverage and emergence of new variants of concern, there is a high demand for vaccination strategy amendment. The ability to elicit protective immunity at the entry gates of infection provided by mucosal vaccination is key to block virus infection and transmission. Therefore, these mucosal vaccines are believed to be a "silver bullet" that could bring the pandemic to an end. Here, we demonstrate that the intranasally delivered Gam-COVID-Vac (Sputnik V) vaccine induced a robust (no less than 180 days) systemic and local immune response in mice. High immunogenic properties of the vaccine were verified in non-human primates (common marmosets) by marked IgG and neutralizing antibody (NtAb) production in blood serum, antigen-specific Tcell proliferation and cytokine release of peripheral blood mononuclear cells accompanied by formation of IgA antibodies in the nasal mucosa. We also demonstrate that Sputnik V vaccine can provide sterilizing immunity in K18-hACE2 transgenic mice exposed to experimental lethal SARS-CoV-2 infection protecting them against severe lung immunopathology and mortality. We believe that intranasal Sputnik V vaccine is a promising novel needle-free mucosal vaccine candidate for primary immunization as well as for revaccination and is worth further clinical investigation.


Тема - темы
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cytokines , Humans , Immunogenicity, Vaccine , Immunoglobulin A , Immunoglobulin G , Leukocytes, Mononuclear , Mice , Pandemics/prevention & control , Primates , SARS-CoV-2/genetics
9.
Hum Vaccin Immunother ; : 2101334, 2022 Aug 01.
Статья в английский | MEDLINE | ID: covidwho-1967806

Реферат

The article highlights the course of long-term SARS-CoV-2 infection in a patient with a secondary immunodeficiency developed with B-cell-depleting therapy of the underlying disease. Analysis of the intrapatient virus evolution revealed an inpatient S:G75A mutation that alters the 72GTNGTKR78 motif of the S-protein, with a possible role in binding to alternative cellular receptors. Therapy with a ready-made COVID-19-globulin preparation (native human immunoglobulin G (IgG) derived from the plasma of convalescent COVID-19-patients) resulted in rapid improvement of the patient's condition, fast, and stable elimination of the virus, and passive immunization of the patient for at least 30 days. The results suggest the use of products containing neutralizing antibodies opens new prospects for treatment algorithms for patients with persistent coronavirus infection, as well as for passive immunization schemes for patients with a presumably reduced specific response to vaccination.

10.
Immunotherapy ; 14(14): 1133-1147, 2022 10.
Статья в английский | MEDLINE | ID: covidwho-1963293

Реферат

Background: The authors describe the developmental process of intravenous anti-COVID-19 hyperimmune immunoglobulin from anti-SARS-CoV-2 neutralizing antibody-containing plasma. Furthermore, the authors investigated its safety and protective activity in animal models. Materials & methods: The manufacturing process included standard ethanol fractionation, chromatographic purification steps and virus removal or inactivation. Results: The authors produced pure and safe immunoglobulin for intravenous administration, with 98.1 ± 6.5 mg/ml protein content, of which 97.6 ± 0.7% was IgG. The concentration factor of SARS-CoV-2 neutralizing antibodies was 9.4 ± 1.4-times. Safety studies in animals showed no signs of acute/chronic toxicity or allergenic or thrombogenic properties. Intravenous anti-COVID-19 hyperimmune immunoglobulin protected immunosuppressed hamsters against SARS-Cov-2. Conclusion: The obtained results can allow the start of clinical trials to study the safety and efficacy in healthy adults.


An intravenous immunoglobulin with a high concentration of SARS-CoV-2-neutralizing antibodies was prepared from COVID-19 convalescent plasma, which could be utilized as a passive immunization tool in regard to COVID-19 treatment. The manufacturing process employed conforms to commonly held business standards within the intravenous immunoglobulin industry and includes plasma ethanol fractionation following chromatographic purification and special virus removal or inactivation steps. The results of the preclinical in vitro and in vivo experiments demonstrate that the immunoglobulin produced in this study is pure and safe enough to be considered for intravenous applications. The SARS-CoV-2 neutralizing antibody concentration was found to have increased 9.4 ± 1.4-times compared with human plasma. The anti-COVID-19 hyperimmune immunoglobulin showed no signs of toxicity and did not cause any blood clot formations when administered to rabbits. Furthermore, the anti-COVID-19 hyperimmune immunoglobulin was demonstrated to protect immunosuppressed hamsters against SARS-CoV-2.


Тема - темы
COVID-19 , SARS-CoV-2 , Administration, Intravenous , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , Humans , Immunization, Passive/methods , Immunoglobulins, Intravenous/therapeutic use , COVID-19 Serotherapy
11.
EClinicalMedicine ; 46: 101360, 2022 Apr.
Статья в английский | MEDLINE | ID: covidwho-1959480

Реферат

Background: HIV-infection is known to aggravate the course of many infectious diseases, including COVID-19. International guidance recommends vaccination of HIV+ individuals against SARS-CoV-2. There is a paucity of data on epidemiological efficacy assessment of COVID-19 vaccines among HIV+. This paper provides a preliminary assessment of Sputnik V vaccine effectiveness in HIV+ patients on antiretroviral therapy (ART). Methods: We performed a retrospective cohort study to assess the effectiveness of the standard Sputnik V vaccination regimen in 24,423 HIV+ Moscow residents during spring - summer 2021, that included dominance of delta variant, with estimation of hospitalization and severe illness rates in vaccinated and unvaccinated patients. Data were extracted from the Moscow anti-COVID-19 vaccination and COVID-19 incidence Registries. Findings: The data obtained indicate that Sputnik V epidemiological efficiency in the entire cohort of HIV+ on ART was 76·33%; in HIV+ with CD4+ ≥ 350 cells/µl, vaccine efficiency was 79·42%, avoiding hospitalization in 90·12% cases and protecting from the development of moderate or severe disease in 97·06%. For delta variant in this group the efficiency was 65·35%, avoiding the need for hospitalization in 75·77% cases and protecting from the development of moderate or severe disease in 93·05% of patients. There was a trend, although not statistically significant, of declining vaccine efficiency in immune-compromised individuals (CD4+ < 350 cells/µl). Interpretation: The study suggested epidemiological efficiency of immunization with Sputnik V in HIV+ ART-treated patients for the original and delta SARS-CoV-2 variants. Funding: Ministry of Health of Russia and Moscow Healthcare Department.

12.
Vaccines (Basel) ; 10(5)2022 May 21.
Статья в английский | MEDLINE | ID: covidwho-1928683

Реферат

The new Omicron variant of SARS-CoV-2, first identified in November 2021, is rapidly spreading all around the world. Omicron has become the dominant variant of SARS-CoV-2. There are many ongoing studies evaluating the effectiveness of existing vaccines. Studies on the neutralizing activity of vaccinated sera against the Omicron variant are currently being carried out in many laboratories. In this study, we have shown the neutralizing activity of sera against the SARS-CoV-2 Omicron variant compared to the reference Wuhan D614G variant in individuals vaccinated with two doses of Sputnik V up to 6 months after vaccination and in individuals who experienced SARS-CoV-2 infection either before or after vaccination. As a control to our study we also measured neutralizing antibody titers in individuals vaccinated with two doses of BNT162b2. The decrease in NtAb titers to the Omicron variant was 8.1-fold for the group of Sputnik V-vaccinated individuals. When the samples were stratified for the time period after vaccination, a 7.6-fold or 8.8-fold decrease in NtAb titers was noticed after up to 3 and 3-to-6 months after vaccination. We observed a 6.7- and 5-fold decrease in Sputnik V-vaccinated individuals experiencing asymptomatic or symptomatic infection, respectively. These results highlight the observation that the decrease in NtAb to the SARS-CoV-2 Omicron variant compared to the Wuhan variant occurs for different COVID-19 vaccines in use, with some showing no neutralization at all, confirming the necessity of a third booster vaccination.

13.
Vaccines (Basel) ; 10(6)2022 Jun 13.
Статья в английский | MEDLINE | ID: covidwho-1911687

Реферат

Mass vaccination campaigns against COVID-19 affected more than 90% of the population in most developed countries. The new epidemiologic wave of COVID-19 has been ongoing since the end of 2021. It is caused by a virus variant B.1.1.529, also known as "Omicron" and its descendants. The effectiveness of major vaccines against Omicron is not known. The purpose of this study is to evaluate the efficacy of the Sputnik V vaccine. The main goal is to assess its protection against hospitalization in the period of Omicron dominance. We conducted our study based on a large clinical center in Moscow (Russia) where 1112 patients were included. We used the case-population method to perform the calculations. The data we obtained indicate that the Omicron variant causes at least 90% of infections in the studied cohort. The effectiveness of protection against hospitalization with COVID-19 in our study was 85.9% (95% CI 83.0-88.0%) for those who received more than one dose. It was 87.6% (95% CI 85.4-89.5%) and 97.0% (95% CI 95.9-97.8%) for those who received more than two or three doses. The effectiveness in cases of more severe forms was higher than for less severe ones. Thus, present study indicates the high protective efficacy of vaccination against hospitalization with COVID-19 in case of Omicron lineage.

15.
Front Immunol ; 13: 822159, 2022.
Статья в английский | MEDLINE | ID: covidwho-1742216

Реферат

Virus-neutralizing antibodies are one of the few treatment options for COVID-19. The evolution of SARS-CoV-2 virus has led to the emergence of virus variants with reduced sensitivity to some antibody-based therapies. The development of potent antibodies with a broad spectrum of neutralizing activity is urgently needed. Here we isolated a panel of single-domain antibodies that specifically bind to the receptor-binding domain of SARS-CoV-2 S glycoprotein. Three of the selected antibodies exhibiting most robust neutralization potency were used to generate dimeric molecules. We observed that these modifications resulted in up to a 200-fold increase in neutralizing activity. The most potent heterodimeric molecule efficiently neutralized each of SARS-CoV-2 variant of concern, including Alpha, Beta, Gamma, Delta and Omicron variants. This heterodimeric molecule could be a promising drug candidate for a treatment for COVID-19 caused by virus variants of concern.


Тема - темы
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/immunology , SARS-CoV-2/physiology , Single-Domain Antibodies/metabolism , Epitopes/immunology , Humans , Neutralization Tests , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/immunology
16.
J Immunol ; 208(5): 1139-1145, 2022 03 01.
Статья в английский | MEDLINE | ID: covidwho-1662741

Реферат

Despite measures taken world-wide, the coronavirus disease 2019 (COVID-19) pandemic continues. Because efficient antiviral drugs are not yet widely available, vaccination is the best option to control the infection rate. Although this option is obvious in the case of COVID-19-naive individuals, it is still unclear when individuals who have recovered from a previous SARS-CoV-2 infection should be vaccinated and whether the vaccination raises immune responses against the coronavirus and its novel variants. In this study, we collected peripheral blood from 84 healthy human donors of different COVID-19 status who were vaccinated with the Sputnik Light vaccine and measured the dynamics of the Ab and T cell responses, as well as the virus-neutralizing activity (VNA) in serum, against two SARS-CoV-2 variants, B.1.1.1 and B.1.617.2. We showed that vaccination of individuals previously exposed to the virus considerably boosts the existing immune response. In these individuals, receptor-binding domain (RBD)-specific IgG titers and VNA in serum were already elevated on the 7th day after vaccination, whereas COVID-19-naive individuals developed the Ab response and VNA mainly 21 d postvaccination. Additionally, we found a strong correlation between RBD-specific IgG titers and VNA in serum, and according to these data vaccination may be recommended when the RBD-specific IgG titers drop to 142.7 binding Ab units/ml or below. In summary, the results of the study demonstrate that vaccination is beneficial for both COVID-19-naive and recovered individuals, especially since it raises serum VNA against the B.1.617.2 variant, one of the five SARS-CoV-2 variants of concern.


Тема - темы
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Protein Domains/immunology , Russia , T-Lymphocytes/immunology , Vaccination
17.
Front Immunol ; 12: 771609, 2021.
Статья в английский | MEDLINE | ID: covidwho-1551509

Реферат

An excessive inflammatory response to SARS-CoV-2 is thought to be a major cause of disease severity and mortality in patients with COVID-19. Longitudinal analysis of cytokine release can expand our understanding of the initial stages of disease development and help to identify early markers serving as predictors of disease severity. In this study, we performed a comprehensive analysis of 46 cytokines (including chemokines and growth factors) in the peripheral blood of a large cohort of COVID-19 patients (n=444). The patients were classified into five severity groups. Longitudinal analysis of all patients revealed two groups of cytokines, characterizing the "early" and "late" stages of the disease course and the switch between type 1 and type 2 immunity. We found significantly increased levels of cytokines associated with different severities of COVID-19, and levels of some cytokines were significantly higher during the first three days from symptom onset (DfSO) in patients who eventually required intensive care unit (ICU) therapy. Additionally, we identified nine cytokines, TNF-α, IL-10, MIG, IL-6, IP-10, M-CSF, G-CSF, GM-CSF, and IFN-α2, that can be used as good predictors of ICU requirement at 4-6 DfSO.


Тема - темы
Antibodies, Viral/blood , COVID-19/mortality , Cytokine Release Syndrome/blood , Cytokines/blood , SARS-CoV-2/immunology , Severity of Illness Index , Acute-Phase Reaction/blood , Antibodies, Viral/immunology , COVID-19/pathology , Critical Care/statistics & numerical data , Cytokine Release Syndrome/pathology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Prognosis , RNA, Viral/analysis
18.
Lancet Reg Health Eur ; 11: 100241, 2021 Dec.
Статья в английский | MEDLINE | ID: covidwho-1506938

Реферат

BACKGROUND: While the world is experiencing another wave of COVID-19 pandemic, global vaccination program is hampered by an evident shortage in the supply of licensed vaccines. In an effort to satisfy vaccine demands we developed a new single-dose vaccine based on recombinant adenovirus type 26 (rAd26) vector carrying the gene for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein - "Sputnik Light". METHODS: We conducted an open label, prospective, non-randomised phase 1/2 trial aimed to assess safety, tolerability, and immunogenicity of "Sputnik Light" vaccine in a single center in Russia. Primary outcome measures were antigen-specific humoral immunity (Anti-RBD-SARS-CoV-2 antibodies measured by ELISA on days 1, 10, 28, and 42) and safety (number of participants with adverse events monitored throughout the study). Secondary outcome measures were antigen-specific cellular immunity (measured by antigen-dependent CD4+ and CD8+ T-cell proliferation, number of antigen-specific interferon-γ-producing cells as well as interferon-γ concentration upon antigen restimulation) and change in neutralizing antibodies (measured in SARS-CoV-2 neutralization assay). FINDINGS: Most of the solicited adverse reactions were mild (66·4% from all vaccinees), few were moderate (5·5%). No serious adverse events were detected. Assessment of Anti-RBD-SARS-CoV-2 antibodies revealed a group with pre-existing immunity to SARS-CoV-2. Upon this finding we separated all safety and immunogenicity data based on pre-existing immunity to SARS-CoV-2. There were notable differences in the vaccine effects on immunogenicity by the groups. Vaccination of seropositive (N=14) volunteers rapidly boosted RBD-specific IgGs from reciprocal geometric mean titer (​GMT) 594·4 at a baseline up to 26899 comparing to 29·09 in seronegative group (N=96) by day 10. By day 42 seroconversion rate reached 100% (93/93) in seronegative group with GMT 1648. At the same time, in the seropositive group, seroconversion rate by day 42 was 92·9% (13/14) with GMT 19986. Analysis of neutralizing antibodies to SARS-CoV-2 showed 81·7% (76/93) and 92·9% (13/14) seroconversion rates by day 42 with median reciprocal GMT 15·18 and 579·7 in the seronegative and seropositive groups, respectively. Antigen-specific T cell proliferation, formation of IFNy-producing cells, and IFNy secretion were observed in 96·7% (26/27), 96% (24/25), and 96% (24/25) of the seronegative group respectively and in 100% (3/3), 100% (5/5), and 100% (5/5) of the seropositive vaccinees, respectively. INTERPRETATION: The single-dose rAd26 vector-based COVID-19 vaccine "Sputnik Light" has a good safety profile and induces a strong humoral and cellular immune responses both in seronegative and seropositive participants. FUNDING: Russian Direct Investment Fund.

19.
Lancet ; 397(10288): 1883-1884, 2021 05 22.
Статья в английский | MEDLINE | ID: covidwho-1406364
20.
Vaccines (Basel) ; 9(7)2021 Jul 12.
Статья в английский | MEDLINE | ID: covidwho-1308465

Реферат

Since the beginning of the 2021 year, all the main six vaccines against COVID-19 have been used in mass vaccination companies around the world. Virus neutralization and epidemiological efficacy drop obtained for several vaccines against the B.1.1.7, B.1.351 P.1, and B.1.617 genotypes are of concern. There is a growing number of reports on mutations in receptor-binding domain (RBD) increasing the transmissibility of the virus and escaping the neutralizing effect of antibodies. The Sputnik V vaccine is currently approved for use in more than 66 countries but its activity against variants of concern (VOC) is not extensively studied yet. Virus-neutralizing activity (VNA) of sera obtained from people vaccinated with Sputnik V in relation to internationally relevant genetic lineages B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 and Moscow endemic variants B.1.1.141 (T385I) and B.1.1.317 (S477N, A522S) with mutations in the RBD domain has been assessed. The data obtained indicate no significant differences in VNA against B.1.1.7, B.1.617.3 and local genetic lineages B.1.1.141 (T385I), B.1.1.317 (S477N, A522S) with RBD mutations. For the B.1.351, P.1, and B.1.617.2 statistically significant 3.1-, 2.8-, and 2.5-fold, respectively, VNA reduction was observed. Notably, this decrease is lower than that reported in publications for other vaccines. However, a direct comparative study is necessary for a conclusion. Thus, sera from "Sputnik V"-vaccinated retain neutralizing activity against VOC B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 as well as local genetic lineages B.1.1.141 and B.1.1.317 circulating in Moscow.

Критерии поиска